
NYCE.LOGIC
- Standard integrations

Table of contents
Standard API Integrations 2

Purpose 3

Fortnox 4
Overview 4
Software requirements 4
Information from Customer 4
Security 4
Configuration 4

Installation 4
Settings 4
Important configurations 5

Defined messages 5
Item import 5
Customer order/return import 5
Customer order/return import (already invoiced) 6
Deliveries export 6
Balance export 6

WooCommerce 7
Overview 7
Software requirements 7
Information from Customer 7
Security 7
Configuration 7

Installation 7
Settings 7
Defined messages 8
WooCommerceItem - Items in WooCommerce 8
WooCommerceOrder - Customer orders in WooCommerce 8
WooCommerceBalance - Item balance in WooCommerce 8
WooCommerceDelivery - Customer orders in WooCommerce 8

Shopify 9
Overview 9

1

Software requirements 9
Information from Customer 9
Security 9
Configuration 9

Installation 9
Settings 9

Defined messages 10
GetItems - Items in Shopify 10
GetOrders - Customer orders in Shopify 10
UpdateBalance - Inventory in Shopify 10
UpdateOrders - Customer orders in Shopify 10
CreateRefunds - Refunds in Shopify 10

Specter 11
Overview 11
Software requirements 11
Information from Customer 11
Configuration 11

Installation 11
Settings 11
Important configurations 12

Defined messages 12
Item import 12
Customer import 12
Customer order import 12
Deliveries export 12
Purchase order import 13
Purchase order deliveries export 14
Transactions export 14

2

Standard API Integrations
NYCE.LOGIC provide a couple of standard integration modules which simplifies and makes the
implementation process more cost efficient for the customer and it’s clients if they use the associated
system.

Currently integrations modules exists for Shopify, WooCommerce, Fortnox and Specter.

The standard integration modules consist of integration settings for import and export and different
message types (which message types are included in each module depends on which system we
integrate with).

In general the standard integration handles Items, Balance, Customer Orders, Customer Order
Delivery and track & trace information.

NYCE.LOGIC uses the API details you provide from the associated system, and then we connect and
integrate with your prefered system.

Fortnox
Overview
Fortnox is a web based ERP for small businesses.
(https://www.fortnox.se/)

Software requirements
1. NYCE.LOGIC 3.6 or later
2. Work Server 3.6 or later
3. Valid license for module Fortnox3 (3.7+)
4. Fortnox and optional warehouse module

Information from Customer
To set up the integration between a Fortnox account and NYCE.LOGIC WMS we need information
about Access Token, Client Secret and Base URL.

3

https://www.fortnox.se/

Security
TLS1.2, SSL3

Configuration

Installation
To be able to integrate with NYCE.LOGIC WMS with Fortnox you need to apply the latest
NYCE.LOGIC WMS version including Fortnox3DatabaseVersion; this will enable the settings and
message types needed for the integration. You also need to add licensekey including module Fortnox.

Settings
The following settings are a prerequisite to use the Specter integration. All of the information below is
supplied from Fortnox for the specific system that should be integrated. NYCE.LOGIC WMS requires
that integration has been connected to a user account in Fortnox:

● Fortnox.BaseUrl - Contains the base URL for the Fortnox API

● Fortnox.AccessToken - Token for accessing the customer’s Fortnox environment

● Fortnox.WarehouseModule - Flag to indicate if WarehouseModule is enabled in Fortnox.

● Fortnox.CreateInvoice - Flag to indicate if invoice should be created in Fortnox.

● Fortnox.PrefixCustomerOrderNumber - Applies a prefix to customerordernumber during import
and removes during export

● Fortnox.StockPointCode - StockPointCode in Fortnox which should receive stock adjustments
NOTE! Only StockPointCode per Warehouse in NYCE.LOGIC can be used. If multiple
StockPoints is needed then multiple warehouses must be set up in NYCE.LOGIC.

● Fortnox.SkipInvoicedForLastModified - Only used when import method OrdersByLastModified
is used. If value is true all invoiced orders are skipped during import. If false then invoiced
orders will be imported unless they already exist in NYCE.LOGIC.

The system specific settings for NYCE.LOGIC WMS is the following:

● Fortnox.Setting.CustomerOrderTemplate = Template to use when creating Customer order

● Fortnox.Setting.CustomerReturnTemplate = Template to use when creating Customer return

● Fortnox.Setting.CustomerTemplate = Template to use when creating customer

● Fortnox.Setting.UseInvoiceAddressAsDeliveryAddress = If true invoice address is applied also
as delivery address

4

Important configurations
Based on the decision of allowing partial delivery or not you have to at the same time set
restorderhandling setting or parameter on OrderType/CustomerOrder

Defined messages

Item import
Items import will add and update all items.

Customer order/return import
Customer orders/returns import will add and update all orders where an invoice has not been created
in Fortnox and that has not yet been processed in the picking proposal.

Parameters used during import:
● filter = invoicenotcreated

Return orders will be imported as customer orders with order type RETURN.

You can use the settings “Fortnox.Setting.CustomerOrderTemplate” or
“Fortnox.Setting.CustomerReturnTemplate” and “Fortnox.Setting.CustomerTemplate” to set the code
of the templates to use to set default values.

If setting “Fortnox.PrefixCustomerOrderNumber” is set then the prefix will be added to the customer
order number during import.

Customer order/return import (already invoiced)
Orders that have been invoiced are normally not imported. But in some scenarios, especially when
Fortnox is connected to an e-commerce site, the order might be paid/invoiced when created and is
therefore filtered out using the ordinary order import method.

To import orders that are already invoiced, add a new integration message source (or change the
existing) and change the Mask from “Orders” to “OrdersByLastModified”.
This will fetch all orders since the date set in the setting Fortnox.LastImportDate (this is automatically
updated every time the import method runs).
In combination with this there is also the setting Fortnox.SkipInvoicedForLastModified. If the setting is
true (default) the importmethod work in the same way as the ordinary order import.
If the setting is false it will import orders that are invoiced unless they already exist in NYCE.LOGIC.

Deliveries export
Export of deliveries will be made for CustomerOrderDeliveries with status Shipped, Completed. The
system will export shipment sequence numbers as well as delivered quantities. If WarehouseModule is
enabled the exported delivery is marked as Warehouse Ready in Fortnox.

If setting “Fortnox.PrefixCustomerOrderNumber” is set then the prefix will be removed from the
customer order number during export if it has been applied earlier.

5

Balance export
Export of items in stock will export all items to Fortnox. This is not a relative update but a fixed update
of the current balance in the warehouse. Please be careful to first export all deliveries so both systems
have knowledge of fulfilled orders/deliveries.

Stock adjustment
Exports stockadjustments to Fortnox for the specified StockPointCode. The export works by importing
the current balance from Fortnox and calculating the differences against the balance in NYCE.LOGIC
and then exporting a Warehouse Inbound Document to Fortnox with the stock adjustments.

NOTE! This export requires both that Warehouse Module is activated and that StockPointCode is set.
If either is false the export will not run.

6

WooCommerce
Overview
WooCommerce is a web based ERP for small businesses.
(https://woocommerce.com/)

Software requirements
1. NYCE.LOGIC 3.6 or later
2. Work Server 3.6 or later
3. Valid license for module WooCommerce (3.7+)

Information from Customer
To set up the integration between a WooCommerce store account and NYCE.LOGIC WMS we need
the information about URL and Rest API Key Details, such as Consumer Key and Consumer Secret.

Security
TLS1.0, TLS1.1, TLS1.2

Configuration

Installation
To be able to integrate with NYCE.LOGIC WMS with WooCommerce you need to apply the latest
NYCE.LOGIC WMS version including WoocommerceDatabaseVersion; this will enable the settings
and message types needed for the integration. You also need to add licensekey including module
Woocommerce.

Settings
● Woo.BaseUrl - Url till WooCom
● Woo.ConsumerKey - Användarnyckel
● Woo.ConsumerSecret - Användarlösen/secret
● Woo.AuthorizedHeader - true/false. Anger om Basic Authorization header ska användas eller

consumer_key/consumer_secret headers
● Woo.PrefixCustomerOrderNumber - Applies a prefix to customerordernumber during import

and removes during export
● Woo.AutomaticallyPaybackRefunds - Defines if an automatic payback of a refund should be

done to the customer. Default is true

7

https://woocommerce.com/

Defined messages

WooCommerceItem - Items in WooCommerce
We import all items with WooCommerceID from WooCommerce, in NYCE.LOGIC WMS
WooCommerceID value is stored in Barcode type WID.

Parameters used during import:
● per_page = 100 # Fetch in batches of 100 items

WooCommerceOrder - Customer orders in WooCommerce
We import customer orders from WooCommerce for those orders that meet the condition Customer
Order status = Processing.

Parameters used during import:
● per_page = 100 # Fetch in batches of 100 items
● status = processing # Only fetch orders in status processing

If setting “Woo.PrefixCustomerOrderNumber” is set then the prefix will be added to the customer order
number during import.

WooCommerceBalance - Item balance in WooCommerce
We export item balance to WooCommerce for all items with WooCommerceID (value stored in
Barcode type WID, with WooCommerceID as value).

WooCommerceDelivery - Customer orders in WooCommerce
We export information about customer orders we delivered.

If setting “Woo.PrefixCustomerOrderNumber” is set then the prefix will be removed from the customer
order number during export if it has been applied earlier.

8

Shopify
Overview
Shopify is a web based ERP for small businesses.
(https://www.shopify.com/)

Software requirements
1. NYCE.LOGIC 3.6 or later
2. Work Server 3.6 or later
3. Valid license for module Shopify (3.7+)

Information from Customer
To set up the integration between a Shopify store account and NYCE.LOGIC WMS we need the
information about URL, both BaseURL and LocationID, and API details such as ApiKey and
ApiPassword.

Security
TLS1.2, SSL3

Configuration

Installation
To be able to integrate with NYCE.LOGIC WMS with Shopify you need to apply the latest
NYCE.LOGIC WMS version including ShopifyDatabaseVersion; this will enable the settings and
message types needed for the integration. You also need to add licensekey including module Shopify.

Settings
● Shopify.ApiKey
● Shopify.ApiPassword
● Shopify.BaseUrl
● Shopify.LocationId
● Shopify.PrefixCustomerOrderNumber
● Shopify.SendRefundNotification

9

https://www.shopify.com/

Defined messages

GetItems - Items in Shopify
We import items from Shopify without any conditions.

GetOrders - Customer orders in Shopify
We import customer orders from Shopify. The condition fulfillment_status = unshipped must be met in
order to let us import the order. We import a maximum of 50 orders each time.

Parameters used during import:
● fulfillment_status = unshipped # Only fetch orders with fulfillment status unshipped
● limit = 50 # Only fetch 50 orders per call

If setting “Shopify.PrefixCustomerOrderNumber” is set then the prefix will be added to the customer
order number during import.

if setting “Shopify.OnlyImportPaidOrders” is set then only orders in status Paid and Partially_refunded
will be imported.

If the CustomerOrderTemplate setting is used then the AllowPartialDelivery flag for CustomerOrder
must be set in the template. If a template is not used, AllowPartialDelivery will default to false.

UpdateBalance - Inventory in Shopify
We export item balance for all items with the custom property “SHOPIFY_INVENTORY_ID”.

UpdateOrders - Customer orders in Shopify
We export information about delivered customer order if the condition CustomerOrderDelivery.Status =
Delivered with substatus Completed is met.

CreateRefunds - Refunds in Shopify
We create a refund in Shopify based on a CustomerReturnDelivery. If setting SendRefundNotification
is active a notification is sent from Shopify to the customer

10

Specter
Overview
Specter is a web based ERP for small businesses.
(https://www.specter.se)

Software requirements
1. NYCE.LOGIC 3.6.
2. Work Server 3.6.
3. Valid license for module Specter (3.7+)
4. Specter 3.x with enabled integration 3.0

Information from Customer

Configuration

Installation
To be able to integrate with NYCE.LOGIC WMS with Shopify you need to apply the latest
NYCE.LOGIC WMS version including SpecterDatabaseVersion; this will enable the settings and
message types needed for the integration. You also need to add licensekey including module Specter

Settings
The following settings are a prerequisite to use the Specter integration. All of the information below is
supplied from Specter for the specific system that should be integrated. NYCE.LOGIC WMS requires
the API - “Lagersystem” permissions in Specter:

● Specter.ApiUserId
● Specter.ApiUserKey
● Specter.sbmid
● Specter.md5Key1
● Specter.md5Key2
● Specter.PrefixCustomerOrderNumber
● Specter.PrefixPurchaseOrderNumber

11

The system specific settings for NYCE.LOGIC WMS is the following:

● Specter.Setting.CustomerOrderTemplate = Template to use when creating Customer order
● Specter.Setting.CustomerTemplate = Template to use when creating customer
● Specter.CreateInvoice = Defines if invoice should be created when delivery is exported

● Specter.SendInvoiceMail = Defines if mail should be sent to customer when invoice is created
● Specter.SendDeliveryEmail = Defines if mail should be sent to customer when delivery has

been confirmed

Important configurations
Based on the decision of allowing partial delivery or not you have to at the same time set
restorderhandling setting or parameter on OrderType/CustomerOrder

If you allow partial delivery you also must enable restorder handling to be able to fully deliver the
orders to Specter.

Defined messages

Item import
Items import will add and update changed items since the last import.
The import should be marked as “Repeat” as it can contain more than 500 items.

Customer import
Customer import will add and update changed customers since the last import. The import should be
marked as “Repeat” as it can contain more than 500 customers.

You can use the settings “Specter.Setting.CustomerTemplate” to set the code of the template to use to
set default values.

Customer order import
Customer orders import will add and update changed orders since the last import. The import should
be marked as “Repeat” as it can contain more than 500 orders.

You can use the settings “Specter.Setting.CustomerOrderTemplate” and
“Specter.Setting.CustomerTemplate” to set the code of the templates to use to set default values.

If setting “Specter.PrefixCustomerOrderNumber” is set then the prefix will be added to the customer
order number during import.

Deliveries export
Export of deliveries will be made for CustomerOrderDeliveries with status Shipped, Completed. The
system will export shipment sequence numbers as well as delivered quantities.
The export should be marked as “Repeat” because it has a fetch size of 100 set as default.

12

If setting “Specter.PrefixCustomerOrderNumber” is set then the prefix will be removed from the
customer order number during export if it has been applied earlier.

Purchase order import
Import of purchase orders will be made for added or updated purchase orders since last import. The
import should be marked as “Repeat” as it can contain more than 500 purchases.

If setting “Specter.PrefixPurchaseOrderNumber” is set then the prefix will be added to the customer
order number during import.

13

Purchase order deliveries export
Export of purchase deliveries will default be made for deliveries with status Closed, Completed. So be
careful to close notifications when receival is done.

If setting “Specter.PrefixPurchaseOrderNumber” is set then the prefix will be removed from the
customer order number during export if it has been applied earlier.

Transactions export
Export of transactions is by default setup to export the following transaction types:

● INVENTORY_COUNTING
● ZERO_INVENTORY_COUNTING
● All transaction codes marked as AllowManualProcessing

The transactions will be exported as “relative” values with positive and negative adjustments.
Balance export

Export of items in stock will export all items to Specter. This is not a relative update but a fixed update
of the current balance in the warehouse. Please be careful to first export all deliveries (both orders and
purchase) so both systems have knowledge of fulfilled orders/deliveries.

14

